

Lecture 7: Uniform Integrability

Lecturer: **Ioannis Karatzas**Scribes: **Heyuan Yao**

Let us place ourselves on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. If $X : \omega \rightarrow \mathbb{R}$ is integrable, then the DCT gives

$$\mathbb{E}(|X| \mathbf{1}_{\{|X| > \lambda\}}) \rightarrow 0, \quad \lambda \rightarrow \infty.$$

Here is a generalization of this observation.

Definition 7.1 A family $\{X_\alpha\}_{\alpha \in A}$ of random variables is called **uniformly integrable**, if

$$\sup_{\alpha \in A} \mathbb{E}(\mathbf{1}_{|X_\alpha| > \lambda}) \rightarrow 0, \quad \lambda \rightarrow \infty.$$

This notion is crucial. It is weaker than boundedness in \mathbb{L}^p for $p > 1$, but stronger than boundedness in \mathbb{L}^1 .

Example: On $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathbb{B}, Leb)$ consider $X_n(\omega) = n \cdot \mathbf{1}_{(0, \frac{1}{n})(\omega)}$, $n \in \mathbb{N}_0$. Clearly $\mathbb{E}|X_n| = 1$, $\forall n \in \mathbb{N}_0$, so this sequence is bounded in \mathbb{L}^1 . However, with $n \geq \lambda > 0$ we have

$$\mathbb{E}(|X_n| \mathbf{1}_{\{|X_n| > \lambda\}}) = n Leb(0, \frac{1}{n}) = 1,$$

so this sequence is not uniformly integrable.

Example: DE LA VALLÉE POUSSIN Criterion: Suppose that $\sup_{\alpha \in A} \mathbb{E}[h(|X_\alpha|)] < \infty$ holds for some function $h : (0\infty) \rightarrow (0\infty)$ with $h(0+) = 0$ and such that $x \mapsto \frac{h(x)}{x}$ is increasing, with $\lim_{x \rightarrow \infty} \frac{h(x)}{x} = \infty$. then the family $\{X_\alpha\}_{\alpha \in A}$ is uniformly integrable.

The great mathematician Charles-Jean Étienne Gustave Nicolas, Baron DE LA VALLÉE POUSSIN, came up with this criterion; and showed that, conversely, if $\{X_\alpha\}_{\alpha \in A}$ is uniformly integrable, there exists a function $h : (0\infty) \rightarrow (0\infty)$ with these properties.

We have also the following characterization for this notion.

Proposition 7.2 A family of random variable $\{X_\alpha\}_{\alpha \in A}$ is uniformly integrable if, and only if, both conditions below hold:

(i) *Boundedness in \mathbb{L}^1 :* $\sup_{\alpha \in A} \mathbb{E}(|X_\alpha|) < \infty$.

(ii) *Uniform Absolute Continuity:*

$(\forall \epsilon > 0)(\exists \delta_\epsilon > 0)$ s.t. $\sup_{\alpha \in A} \mathbb{E}(|X_\alpha| \mathbf{1}_B) < \epsilon$ holds for every $B \in \mathcal{F}$ with $\mathbb{P}(B) < \delta_\epsilon$.

We know very well by now, that a sequence of integrable random variables can easily converge a.e., but fail to converge in \mathbb{L}^1 . The following result identifies uniform integrability as the "unique glue" that makes this happen.

Theorem 7.3 (Generalized DCT) *Suppose the sequence of integrable r.v.'s X_1, X_2, \dots converges in probability to some random variable X .*

Then the following are equivalent:

- (i) *the X_1, X_2, \dots are uniformly integrable;*
- (ii) $\mathbb{E}(|X_n - X|) \xrightarrow{n \rightarrow \infty} 0$, i.e., $X_n \xrightarrow{\mathbb{L}^1} X$;
- (iii) $\mathbb{E}|X_n| \xrightarrow{n \rightarrow \infty} \mathbb{E}|X|$.

The equivalence (i) and (ii) above, has become known as SCHEFFÉ's lemma.

Finally, we have a famous compactness result.

Theorem 7.4 (DUNFORD-PETTIS) *Consider a family $\{X_\alpha\}_{\alpha \in A}$ of integrable random variables. Then the following are equivalent:*

- (i) *the family is uniformly integrable.*
- (ii) *every sequence $(X_n)_{n \in \mathbb{N}_0}$ from the family, contains a subsequence which converges weakly in \mathbb{L}^1 to some $X \in \mathbb{L}^1$.*